COOL:Joe Evaluation Results

[image: image61.jpg]
COOL:Joe Evaluation

[image: image2.wmf]

Full Report
January 7, 2000

[image: image1.wmf]

[image: image26.jpg][image: image3.jpg]

Table of Contents

4Introduction

4Summary

5Product Strengths

7The COOL:Joe Product Suite

7Requirements

7COOL:Joe Component Modeling

8COOL:Joe Component Manager

8COOL:Joe EJB Implementation

9COOL:Joe Configuration Tool

9COOL:Joe Development Environment

15COOL:Joe Evaluation Results

15Evaluation Criteria

16The Quantum Product Evaluation Methodology

17The Evaluation Process

17Evaluation Environment

17Physical Environment

18Analysis and Design

18Notation

19Methodologies

19Integration with Development Environment

19Process

19Installation Configuration and Administration

19Installation Process

20Configuration Tools

20Documentation

20Help Facility

20Installation Guide

20Configuration Guide

20Tutorial Guide

21Development

21General

27Team Development

28Database Support

29Java Support

31Deployment

31Generate Deployment Code

31Packaging Support

31Run-time

31Java SDK Support

32Servlet Support

33Summary of Results

36Building Components in COOL:Joe – Steps to Building Applications

36Workflow Steps

37Installation and Configuration

37Design, Implement and Test Java Code

37Obtain/Create Component Specification

41Transform Component Specification to Component Implementation

43Implement Component

54Test and Debug Components

55Develop, Deploy and Test EJB

55Configure EJB Server

57Setup Deployment Preferences

58Wrap Component as EJB

59Build EJB

60Generate EJB Test Harness

60Test and Debug EJB

61About Quantum Enterprise Solutions, Inc.

Introduction

As Java enters the mainstream, focus is shifting from using Java as a client side language for creating “pretty” applets to creating and deploying fully functional Java components that run on the server-side of a web-enabled client/server environment. Currently Java Servlets provide the basic ability to extend web server processing with components written in Java.

The big thrust, though, has been the emergence of Enterprise JavaBeans as viable server-side processing components. The “slowness” of this emergence has been the relative unavailability and immaturity of full-fledged Java and Enterprise JavaBeans development environments. This has changed with the release of Sterling Software’s COOL:Joe development environment, which provides leading edge features and functionality for developing and deploying large-scale enterprise Java solutions. Sterling Software’s COOL:Joe product is a solid and well-rounded first generation EJB development environment possessing many of the features required to develop and deploy EJBs today.

Summary

The COOL:Joe Product Suite consists of three components:

· COOL:Joe – The COOL:Joe Development Environment and Configuration Tool.

· COOL:Spex – Component-based analysis and design environment that uses UML notation and Catalysis methodology for component-based development.

· Component Manager – Provides the “bridge” between COOL:Spex models and COOL:Joe models.

Quantum Enterprise Solutions, Inc conducted an in-depth product review of the COOL:Joe Product Suite. We followed our standard evaluation process and our standard evaluation matrix to evaluate all features of the COOL:Joe product. Quantum followed its proven Quantum Product Evaluation Methodology (QPEM) to conduct the evaluation.

This report summarizes the results of the review process, which was based upon the following criteria categories:

· Analysis and Design – The notation, methodologies and process used for analysis and design.

· Installation, Configuration and Administration – The Installation process for the product configuration and administration features and facilities of the product.

· Documentation – The completeness and clarity of all documentation, including the help facility, and installation and configuration guides.

· Development – The usability, features and functionality of the development environment. This includes debugging and testing features, code generation facilities, wizards, developer productivity features, team development support, database support and java support. Also included is software process support and the ability of the tool to support a standard and consistent development process.

· Deployment – The deployment features of the product, including packaging.

· Run-time – The run-time features of the product, including Java requirements.

Particular emphasis was placed on the java development aspects of the tool, including support for Java and Enterprise JavaBeans (EJBs), the programming model and discipline that support he development process.

We found COOL:Joe to be a state of the art Java development environment offering the amenities of a productive development environment. COOL:Joe’s multitude of wizards takes the burden of developing support code and pre-canned code as well as testing code away from the developer. By allowing the developer to focus on correctly implementing business-processing code instead of support and test code, COOL:Joe significantly reduces the amount of time required to develop Java components and EJBs. COOL:Joe’s code executed cleanly on the target EJB Server, WebLogic.

If you are a veteran COOL user and want to move into EJB using COOL:Joe is a no-brainer. If you are looking for an environment that provides end-to-end support for implementing EJBs, COOL:Joe provides a structured and methodical way to analysis, design, implement, and test and deploy business components as EJBs.

Product Strengths

Our evaluation has identified the following as strengths of COOL:Joe:

Integrated development environment for java components and EJBs – COOL:Joe, through its Project Window, provides a complete view into the development environment of a component. COOL:Joe brings together all the elements of components of a java development environment overcoming the difficulties of working with a diverse and fragmented development environment. An integrating testing and debugging environment guarantees the deployment of quality code.

Analysis and Design – COOL:Spex supports UML and the Catalysis methodology that allow you to create a fully specified analysis and design model of your application system.

Code Generation – COOL:Joe’s variety of wizards generate a lot of code that developer’s do not want to deal with. COOL:Joe includes wizards that automate the creation of database support code, test code, EJB support code and deployment support.

Reduced Lines of Code to Develop – COOL:Joe’s wizards and code generation facilities generate a significant portion of code required to support distributed java application and EJBs. This includes code to support persistency, remote invocation and test harnesses.

Faster Delivery and higher quality – Developers don’t need to concern themselves with writing JDBC code, complex object mapping, supporting a specific EJB server

EJB Support – Building persistence into EJBs and building EJBs requires a significant amount of support code to make everything work. COOL:Joe builds all the required code for you, allowing you to focus on your business logic and not on the implementation details of EJBs. – COOL:Joe’s EJB Wizard and Deployment wizard provide everything needed to build and deploy EJBs.

Feature-Rich Development Environment – The COOL:Joe Editor contains a variety of “fastpath” options, called smart features, which allow you to quickly create customized code. Smart Expansions provides the ability to generate customized pre-canned code while Smart Macros provide the ability to generate automated code.

File Import – COOL:Joe allows importing of a variety of files into COOL:Joe projects. Models can be shared across the development team by using XML as an exchange mechanism. In addition, the XML format can also be used as well.

Strong Wizard Support – COOL:Joe comes with a myriad of wizards that guide you through key processes such as persistence and database support, importing files. This allows custom code generation specific to your component and EJBs.

Documentation – COOL:Joe’s documentation is provided in the form of compiled html files. There are help files for COOL:Spex, Component Manager and COOL:Joe. Each help file provides detailed and clear information on the component.

Tutorial – COOL:Joe comes with a comprehensive tutorial that walks you through the COOL:Joe product and the process by which you build and test components.

Component-Based Environment – By analyzing, designing and developing your java objects as components, you reap the rewards of component-based design and architecture and integrates cleanly with deploying your components as EJBs.

Round Trip Engineering – COOL:Joe provides complete support for round trip engineering. Existing code is easily added to you model and changes made to source code are reflected in the model.

The COOL:Joe Product Suite

Requirements

The Cool:Joe Product Suite requires a minimal software environment, including Java components, operating system and web browser. This is detailed in the table below.

Component
Minimum Requirement

Operating System
Windows NT 4.0, Service Pack 4 with Year 2000 updates

Java SDK
Version 1.2.2

Java SDK Documentation
Version 1.2.2

Enterprise JavaBean Specification classes
Version 1.0

Java Naming and Directory Interface (JNDI)
Version 1.1.2

Java Web Development Kit (JWSDK)
Version 1.0

COOL:Joe Model Repository
ObjectStore 5.1, ObjectStore Java interface

Database
Relational Database with JDBC Type 4 Driver

Web Browser
Microsoft Internet Explorer 5.0 or higher

Netscape Navigator 4.5 or higher

Plug-ins
Java Activator Plug-in

EJB Server
WebLogic 4.0.3

Table 1 - Summary of Software Requirements

COOL:Joe Component Modeling

COOL:Spex provides a complete object-oriented analysis and design environment for building complex application systems. Is supports UML for its notation and Catalysis for object-oriented analysis and design. COOL:Spex allows the complete specification of business-level components and supports large-scale Component-Based Development. This allows components to be specified independent of implementation by specifying behavior at the interface level.

At the heart of COOL:Spex is the component specification. The features and functionality of the product are geared towards capturing the total behavior of components. These components are captured in packages in a manner similar to how java code and class files are packaged and organized.

COOL:Spex provides a complete graphical environment for capturing all UML diagrams, which are summarized in the table below.

COOL:Spex Tool
UML Element

Class Diagrammer
Class Diagram

Collaboration Diagrammer
Collaboration Diagram

Component Architecture Diagrammer
Component Architecture Diagram

Interface Diagrammer
Interface Diagram

Type Diagrammer

Use Case Diagrammer
Use Case Diagram

Table 2- Summary of COOL:Spex diagram tools
The Use Case Diagrammer allows you to create use case diagrams that capture the interaction between you application and users of the application. These users can be physical users of another application. Use Case diagrams capture behavior of your application from external sources.

The Interface Diagrammer allows you to fully specify the behavior of an interface, including the detailed behavior of each operation. This is accomplished by building an interface type model that completely defines the concepts and constraints that support all the operations on the interface. These interfaces are then “assigned” to components in a component architecture diagram.

The component architecture diagram is a key facility as it allows you to capture and model the dependencies between components. The component architecture diagram shows the relationship between components and consists of component specifications, interfaces, and usage relationships among components.

Reports can be generated in HTML format allowing easy hypertext-based navigation. Reports can be run on any item in a model tree including a diagram, diagram folder, package or object type.

As we used COOL:Spex to bring our standard component framework into the environment, we used almost all the facilities of COOL:Spex. We found it be a full-featured and solid analysis and design environment. We were particularly impressed with the integration of the tools and the meta-model that allowed all the tools to work together on all aspects of the model. The on-line help file provide instant access to all the information we needed as we used the tool. The organizational aspects of the environment, especially the package hierarchy, enable you to create a well-organized and coherent representation of your application packaged as discreet components.

COOL:Joe Component Manager

[image: image27.wmf]Specify

Component

Develop

Component

Component

Development

Develop

EJB

Create

Model

Create

Package

Build Test

Harness

Create

Component

Specification

Specify

attributes and

methods

Create

Interface Type

Create

Specification

Type

Test

Create

Package

Implement

Business Logic

Build EJB

Deploy EJB to

Developer

Environment

Implement

Persistence

Deploy EJB to

Shared

Test EJB in

Developer

Environment

Deploy EJB to

Shared

Component Manager is used to “migrate” COOL:Spex models to COOL:Joe models. The actual process is relatively straightforward and we observed no problems when converting our test environment COOL:Spex model into COOL:Joe.

Basically, the process is creating a new model in COOL:Joe, selecting the source COOL:Spex model under the COOL:Spex Models in the Component Manager tree, dragging and dropping it into the COOL:Joe model you created previously. You may also use copy and paste as well instead of dragging and dropping.

Figure 1 - The Component Manager

COOL:Joe EJB Implementation

COOL:Joe is a full-featured application development environment for developing, testing and deploying java components and EJBs. As installed, COOL:Joe consists of two components – the COOL:Joe environment and the COOL:Joe Configuration Tool.

COOL:Joe Configuration Tool

The COOL:Joe Configuration Tool provides one-stop shopping for all COOL:Joe configuration needs. This tool allows for full and complete configuration of the java environment that COOL:Joe uses. The COOL:Joe Configuration tool also has an in-depth help facility that provides detailed information on how to use the tool.

[image: image28.wmf]COOL:Joe Evaluation Network

APPSERVER

Data Server

DEV 2

DEV 4

CLIENT 1

DEV 5

Developer Workstations

CLIENT 2

Servers

The tool is presented as a tabbed window with three tabs – Settings, Advanced, and Directories. The Settings tab contains the Java parameters and classpath as illustrated in the figure.

The Edit Java Parameters dialog box enables you to construct and maintain a list of Java Parameters without being required to know the syntax of the parameters.

One of the biggest challenges in using Java is maintaining the “correct” CLASSPATH. COOL:Joe takes this troublesome, time-consuming and error-prone activity away from you by assembling the CLASSPATH for you. When you run COOL:Joe, the CLASSPATH "Joe classpath"+"system classpath"+"user classpath".

Figure 2 - The COOL:Joe Configuration Tool

COOL:Joe Development Environment

The COOL:Joe Development environment consists of four elements. These are summarized in the table below.

Component
Description

Toolbar
Provides access to the functionality of the COOL:Joe Environment

Project Window
Provides access to the project tree for a model.

The Editor
Provides advanced editing capabilities for Java code.

Wizards
Provides

Table 3 - Summary of COOL:Joe Components

Toolbar

[image: image29.wmf]Explorer

Debug Tool

Window

Console Output

Window

Message Log

The COOL:Joe toolbar provides access to global functionality and features. For example, the Tool menu provides access to Import and Export capabilities.

Figure 3 - The COOL:Joe Toolbar

The toolbar also provides access to import files into your project. COOL:Joe enables you to import not only java files and jar files but files in other formats including Microsoft Word, Microsoft Project and Microsoft Excel. Most importantly, COOL:Joe also allows you to import files in XML format.

[image: image30.wmf]Microsoft Office

Files

Word documents

PowerPoint presentations

Excel Spreadsheets

Office binders

Access Databases

Microsoft Office

Files

Word documents

PowerPoint presentations

Excel Spreadsheets

Office binders

Access Databases

Image Files

JPEG files

GIF files

Image Files

JPEG files

GIF files

Multimedia

Files

Sound files

Music files

Multimedia

Files

Sound files

Music files

Java Files

Properties files

JAR Files

Programming

Files

Java Files

Properties files

JAR Files

Programming

Files

HTML files

Internet

Files

HTML files

Internet

Files

Text files

Misc.

Files

Text files

Misc.

Files

COOL:Joe Development Environment

COOL:Joe Development Environment

One of the key features of the Toolbar is to provide access to the preferences for the entire environment. This is done using the Preferences Window , illustrated to the left. Here you set options for the project tree that is displayed in the Project Window as well as the options of the Editor and the toolbar itself.

We found that after setting up our environment, we spent most our time using the Persistence Generation, Build and Deployment windows. The Deployment window allows you to specify the JDBC and JNDI environment for your component. You typically bring up this window before you do a build or run the Persistence or DDL Generation Wizard.

Figure 4 - The Preferences Window

Project Window

[image: image31.png]
The Project Window displays the project tree for the currently open model. The project tree is a hierarchical representation of your component that is logically organized. The Project Window provides access to all the elements of your component. The figure on the left shows the project tree for the COOL:Joe tutorial.

Each project is organized in a hierarchical fashion with objects and entities organized in packages. The figure uses the following icons to represent constructs in the COOL:Joe model:

[image: image32.png][image: image33.png]Package

Class

[image: image34.png][image: image35.png]Specification Package

Specification Type

[image: image36.wmf]Remote

Developer Workstation

Application Server

Developer Workstation

Test Harness

Classes

Test Harness

Classes

Test Harness

Classes

Test Harness

Classes

EJB Proxy

Class

EJB Proxy

Class

JDBC Driver

Class

JDBC Driver

Class

JDBC Driver

Class

JDBC Driver

Class

JNDI

EJB Container

EJB Session

Bean Classes

EJB Session

Bean Classes

EJB Container

Classes

EJB Container

Classes

Database

Database

Component

Classes

Component

Classes

Component

Classes

Component

Classes

Persistence,

Framework

Classes

Persistence,

Framework

Classes

Persistence,

Framework

Classes

Persistence,

Framework

Classes

Test

Application

Test

Application

Test

Application

Test

Application

Test

HTML

Test

HTML

[image: image37.wmf]Specify

Component

Develop

Component

Component

Development

Develop

EJB

Create

Model

Create

Package

Build Test

Harness

Create

Component

Specification

Specify

attributes and

methods

Create

Interface Type

Create

Specification

Type

Test

Create

Package

Implement

Business Logic

Build EJB

Deploy EJB to

Developer

Environment

Implement

Persistence

Deploy EJB to

Shared

Test EJB in

Developer

Environment

Deploy EJB to

Shared

Java Package

EJB Component

[image: image38.wmf]COOL:Joe Evaluation Network

APPSERVER

Data Server

DEV 2

DEV 4

CLIENT 1

DEV 5

Developer Workstations

CLIENT 2

Servers

[image: image39.bmp]Component Specification

Component Implementation

[image: image40.bmp][image: image41.bmp]Interface Type

Interface Implementation

Figure 5 - The Project Window

As the figure above shows, a typical user component project, in this case the tutorial package Seminar, has a consistent organization to it. In the project tree, there are separate hierarchies for code packages and specification packages. Database table objects are not sprinkled through the project, but are contained is a discreet package DBTables.

The Seminar code package contains all the java code for the component. This simple component, Seminar, has a component implementation, an Event Interface type, and event and seminar classes that support them. A component that supports persistency has a persist package and a component that is an EJB has a session package.

The figure shows that the Seminar code package has separate packages for persistent and EJB entities. The EJB package, session, contains packages that in turn contain all the support code for the EJB. The ejbproxy, package contains code that support remote EJB access while remote contains the code to support the Home and EJB object interfaces required for EJBs.

By default when you add elements to the project tree you are in multiple add mode. After the name of the element is typed in press the Enter key and then the Esc key to exit multiple add mode. This feature really saves time when adding multiple entries for an element, such as creating multiple specification types, without having to continually right-click and select the element to add.

Editor

For writing business logic, you use The Editor. The Editor is an advanced Java code editor that supports a variety of smart features. These smart features really provide development optimization techniques enabling you to code your components quickly. These include:

· Smart Colors – Customizable color s\coding of java language elements.

· Smart Expansions – Inserts java code for regularly used statements and operations.

· Smart Macros – Provide custom macros that simplify redundant and tedious typing tasks.

· Smart Syntax – Automatic syntax checking of Java code as you type

[image: image42.bmp]
Our findings indicate that the smart features of The Editor saves the developer significant time by eliminating laborious and labor intensive operations that add little value to the component.

Smart Colors provides a quick and easy way to distinguish java language elements from your code. Smart Expansions allows you to insert text, such as keywords and opening/closing braces, automatically while typing in the Editor. When you type the smart expansion keyword followed by a space, the keyword "expands" all of the information as entered in the Smart Expansion definition significantly reducing the need to type commonly used text. The Editor includes a default set of Smart Expansions, which you can edit as necessary.

Smart Macros enable you to create custom macros in Java and use the macro while working in The Editor.

Figure 6 - The Editor in Action

Wizards

COOL:Joe’s wizards provide easy to use interfaces for performing a variety of operations and processes during the development of your component. These wizards guide you through the process of generating code that support persistence for your component, create all the code to support deploying your component as an EJB as well as customizing the build process and generating test code for your component.

We found COOL:Joe’s wizards to be huge time savers for developers. Most wizards were four to five steps in length, were simple to use, and required only a few minutes to use. What we found very attractive is the reporting features. At the end of the process, each wizard presents a progress window, which clearly shows the progress of the process. Upon completion, you can print out and save the results of the wizard, eliminating the need to write anything down. For certain wizards, we saved these reports as key project artifacts and placed them into our version control system as a permanent record of the process.

[image: image43.bmp]Build Wizard

This wizard walks you through the build process. Here you choose if you want compile and export all the java code for your project or just the files that changed. You can also pass command line arguments to the compiler to customize your build. The figure below shows the easy to use interface that allows you to control and customize your compilation. The build wizard exports files from your model, compiles Java files into class files, and stores the class files in Java Archive (JAR) files. It is a relatively easy wizard to use and you will use it a lot to build your components before testing and deploying.

[image: image4.jpg]
Figure 7 - Selecting Options for Compilation

[image: image44.bmp]DDL Generation Wizard

The DDL Generation Wizard generates code that allows you to store your component’s state and attributes into a relational database. The wizard allows you to select the classes you want to make persistent, and the target database that the object(s) will be stored. The wizard then generates the appropriate interface class to support the component including a factory object.

[image: image45.bmp]Deployment Wizard

The Deployment Wizard is used to deploy an EJB to a specific EJB server. This EJB server can be anywhere in your network as along as it is accessible from the development workstation. The Deployment Wizard relieves some burden from this process by storing EJB deployment settings as profiles. Each profile specifies the location of the target EJB Server allowing you to simply change the target deployment environment by making a selection from a combo box.

[image: image5.jpg]
Figure 8 - Specifying the profile in the Deployment Wizard

During our evaluation, we had the developers deploy their EJBs to the EJB server on their development machine for testing purposes. When testing was completed on the EJB, it was then deployed to the shared EJB server

[image: image46.wmf]Client

Client

EJB Object

(client view)

EJB Object

(client view)

EJB Home

(bean identifier)

EJB Home

(bean identifier)

EJB Application Server

EJB Container

Context

Context

Environment

Environment

Deployment

Descriptors

Deployment

Descriptors

Persistence

Persistence

Java

Objects

Java

Objects

EJB

EJB

Support

EJB

Support

methods

Locate

create

destroy

methods

Locate

create

destroy

JDBC

JDBC

Messaging

Messaging

Transaction

Transaction

Security

Security

Resource

Mgmt

Resource

Mgmt

EJB Generation Wizard

In order for EJBs to function properly, a significant amount of “system” code is required, including proxy objects, remote interfaces and session bean objects. All these combine to make the EJB function in an EJB container in an EJB server and be accessible to client java code. COOL:Joe generates a significant amount of code to support the EJB environment and generates a new package titled session that holds all the EJB support classes

Using the wizard, you specify the name for the session bean for your implementation object, the Home Interface name, the Remote Interface Name and the Home Interface JNDI name. The wizard creates intelligent defaults for these names by appending SessionBean to your implementation object name, prepending I for interface names, EJBHome for Home interface names, EJBObject for Remote Interface names and the implementation object name for the Home Interface JNDI name. We suggest your either accept these or create a standard naming convention that you use consistently across your projects. This allows you to keep track of the “mapping” between your java components and the corresponding EJB.

[image: image47.jpg]
File Import Wizard

The wizard allows you to import files into your project. The wizard prompts you to choose which files to import and which package to import the files to. You can create a new non-java package anywhere in your package hierarchy to hold non-java files such as image files, Microsoft Office Files and HTML files.

[image: image48.bmp]
Persistence Wizard

Using the Persistence Wizard you indicate which classes that your want to make persistent. The wizard creates the related database table objects in your model, and an sql file that contains data definition language (DDL) that contains the definition of these tables in SQL. You run this sql file against your database to create the corresponding tables.

The Persistence Wizard is used to:

· Generate persistent classes for selected classes in your model

· Generate database table objects in your model

· Generate persistent support classes including supporting factory objects, interface object and a peer object that is JDBC-implementation specific providing the interface between the persistence support objects and the JDBC driver.

[image: image49.bmp]
Specification to Implementation Wizard

The Specification to Implementation Wizard guides you through the process of taking your component specification to the corresponding java implementation code. It is these implementation files that you will be editing to add your business logic and processing logic to.

The wizard prompts you to create a package that holds the implementation. Please not that this package name needs to be unique like all Java packages. This requires creating a standard naming convention and hierarchy. In fact, Sun recommends that you base this off of a DNS name to guarantee global uniqueness of your java and component packages.

The wizard creates a special package, sterling, under your project that contains all the generated support code. This code consists of files that support component creation and interfaces. You will not have to edit this code. It is used to glue your component implementation to the COOL:Joe framework classes. We found that for simple components this wizard generates twelve different files.

Test Harness Wizard

[image: image50.bmp]
One of the most time-consuming and un-rewarding tasks in software development is the creation of the so-called test environment, test driver or test harness. These are typically in the form of source code files that have code that calls methods on objects and components under development. A user interface application calls these methods are places the results in fields in a window. This allows the developer to “visually” debug and verify operations.

COOL:Joe not only takes the drudgery out of this but takes all the work out of it as well. COOL:Joe’s Test Harness Wizard generates test code drivers for your java component and EJB. The wizard guides you through the process, allowing you to select which methods to generate test code for as well as allows the form of the test program, either a java application, a HTML application or both. This test code is not “throwaway” – you save the test harness code in packages that can then be deployed to the test team for integration, string and system tests.

COOL:Joe Evaluation Results

Evaluation Criteria

Quantum used its standard evaluation criteria matrix to evaluate COOL:Joe. This matrix, which is described in the table below, captures forty key criteria for development environment products.

Category
Criteria
Description

Analysis and Design

Notation
What support for notation does the product support

Methodologies
What methodologies does the product support and how standard are they

Integration with Development Environment
How is the analysis and design environment integrated with the implementation and development environment

Process
How effective is the overall analysis and design process

Installation, Configuration and Administration

Installation Process
How clean is the Installation process

Configuration Tools
What configuration tools and capabilities does the product have

Documentation

Help Facility
What type of help facility id available

Installation Guide
Is there an Installation Guide and if there is how clear and complete is it

Configuration Guide
Is there an Configuration Guide and if there is how clear and complete is it

Tutorial Guide
Is there an Tutorial Guide and if there is how complete is it

Development

IDE
What are the features of the IDE

Tutorial
How complete is the tutorial in introducing and explaining the environment and tool

Code Generation Facilities
What type of code generation facilities does the product have

Round Trip and Reverse-Engineering Support
Does the product support reverse engineering of java code. Can the product reflect changes in code to the project model

Developer Productivity Features
What are developer productivity features of the product

Development Discipline
Does the product support and/or specify a specific discipline or approach to development

Debugging Support
What type of debugging facilities does the product have

Import Capabilities
What type of import capabilities does the product have

XML Support
What type of support does the product have for XML

Export Capabilities
What type of export capabilities does the product have

Wizard Support
Does the product have wizards to automate interactive tasks

Development Process Support
What support is there for the development process

Team Development

Version management
What version management capabilities does the product have

Configuration management
What are the configuration management capabilities of the product

Database Support

Database
What database does the product support

DDL Generation Capabilities
What DDL generation capabilities does the product have

Persistence Support
What support for persistence does the product have

Connectivity
What are the database connectivity mechanisms

Java Support

EJB Support
Does the product support EJBs

JDBC
Does the product support JDBC

JNDI
Does the product support JNDI

EJB Server
What EJB servers does the product support

Servlets
Does the product support servlets

Deployment

Deployment Support Code
Does the product generate deployment code

Packaging Support
What type of code packaging does the product support

Run-time

Java SDK Support
What version of the Java SDK does the product support

Servlet Support
What servlets engines does the product support

Table 4 - Evaluation Criteria Matrix

The Quantum Product Evaluation Methodology

The Quantum Product Evaluation Methodology is a proven approach for evaluating software products, including development tools and environments, middleware tools and environments, application server environments and composite tools that incorporate elements of these.

It provides the following key elements of the evaluation process:

Quantum Product Evaluation Process – Standard set of steps that guides the evaluation process and deliverables.

Quantum Product Evaluation Elements – Standard set of features to be evaluated including product components and an evaluation matrix that contains the complete set of criteria to be evaluated.

Quantum Product Evaluation Environment – Standard evaluation environment that is comprised of standard application functional elements and components and a physical environment comprised of machines configured to s standard configuration.

The Evaluation Process

The set of macro steps that Quantum followed for the evaluation are:

Configured environment – We created a “clean” environment with fresh installations of required java components, WebLogic and Microsoft SQL Server.

Installed and configured product suite – We conducted the standard installation process and verified the environment using the Configuration Tool.

Conducted tutorial – Our team went through the tutorial from beginning to end. This gave the team a good hands-on introduction to the environment and its capabilities and features. It also provided us with the opportunity to “certify” the environment before embarking on a custom project.

Imported standard evaluation components – We took our standard product evaluation framework, which consists of a set of related objects captured in UML, and created a corresponding COOL:Spex model.

Implemented Java components and EJBs – We then took the COOL:Spex model and imported into COOL:Joe using Component Manager and the conversion process. We then implemented the components using COOL:Joe, tested the components using the Test Harness Wizard and deployed and tested the components as EJBs on a shared EJB server.

Evaluation Environment

Physical Environment

[image: image51.bmp]Quantum’s evaluation environment for COOL:Joe is depicted in the figure below. Developer workstations contained the complete environment that allowed each developer to implement, build, test and deploy their components in an isolated environment. The client workstations were used to test the components in a string test environment. They contain the basic run-time Java environment and use the test harness jar files generated by developer’s during their testing process. The application server contained the complete run-time environment for COOL:Joe and WebLogic.

Figure 9 - The Evaluation Physical Environment

The configuration of each of these machines is captured in the table below. These machines do require some processing, memory, and hard disk horsepower. We have found that Java environments require significant resources

Environment
Software
Hardware

Developer Workstation
JDK 1.2.2

JSDK 2.0

JNDI 1.1.2

EJB 1.0

Web Server

 Microsoft Internet Explorer 5.0
Windows NT 4.0 Service Pack 4

Memory - 256 MB

Hard Disk – 10.4 GB

Processor – 200 MHz PII

EJB Application Server

Web Server
JDK 1.2.2

JSDK 2.0

JNDI 1.1.2

EJB 1.0

IIS 4.0

BEA WebLogic 4.0.3

Microsoft Internet Explorer 5.0

JDBC - WebLogic jdbcKona, I-Net Sprinta
Windows NT 4.0 Service Pack 4

Memory - 320 MB

Hard Disk – 18.5 GB

Processor – 400 MHz

Client Workstation
Microsoft Internet Explorer 5.0
Windows 98

Memory - 128 MB

Hard Disk – 6.4 GB

Processor – 200 MHz

Database Server
Microsoft SQL Server 7.0
Windows NT 4.0 Service Pack 4

Memory - 256 MB

Hard Disk – 13 GB

Processor – 400 MHz Pentium

Table 5 - Evaluation Environment Machine Configurations

Analysis and Design

Notation

COOL:Spex uses UML as it notation language. UML provides a standard, graphical notation for specifying diagrams, a standard set of terminology for object-oriented constructs and interactions, and most importantly a meta-model that captures a road map of valid relationships among the various object types.

Using COOL:Spex, you can fully specify the behavior and construction of your application or system using:

· Use Case analysis - and its supporting use case diagrams that capture interactions between a user of an application and application processing components

· Type Diagrams – captures the static rules and relationships that exist among objects in a domain

· Component Architecture Diagram – Captures and models dependencies and behavior among components, allowing you to specify interfaces and the usage relationships between components.

· Collaboration Diagrams – Captures the dynamic behavior among objects, including actions between objects of a domain.

· Interface Diagrams – Allows the specification of an interface including the detailed behavior of each method.

· Class Diagrams – Captures the static model of the system by capturing static relationships between objects in your domain.

COOL:Joe is a component development environment that provides the ability to design a component in terms of specifying its interfaces and methods and attributes.

Methodologies

COOL:Spex uses Catalysis as its analysis and design methodology. The combination of UML with the Catalysis methodology offers a very rich and full-featured analysis and design environment that provides all you need to conduct and complete a full and detailed analysis and design on your application system.

COOL:Joe is a full-fledged application analysis and design environment for developing component-based application systems. Some of the capabilities are creating component specification packages, specification types, interface types and component specification objects.

Integration with Development Environment

If you require thorough analysis and design activities, you should use COOL:Spex. You can do a complete analysis and design of your application system using COOL:Spex. Moreover, in COOL:Joe's implementation environment, you can create a specification or modify one for a component including methods and attributes in an easy and straightforward manner. This allows components to be designed from scratch in COOL:Joe or imported from a COOL:Spex model using the Component Manager. Either way the result is the same – a fully specified component.

Process

COOL:Spex is a full and complete analysis and design environment. Unlike other A & D environments, COOL:Spex provides component-based approach to analysis and design. Focus in on creating interfaces and specifying methods and attributes on interfaces. Components are ‘connected” by specifying interactions between interfaces on components.

Installation Configuration and Administration

Installation Process

Installing the entire COOL:Joe environment installs COOL:Spex, (COOL:Joe Component Modeling), COOL:Joe Component Manager, and ObjectStore. ObjectStore provides the repository for both COOL:Joe and COOL:Spex model files. Installation of the COOL:Joe product suite is straightforward. If the required Java components are not installed on your system, the installation program will prompt you to install them. For this evaluation we created a “clean” environment and installed Java SDK 1.2.2, JNDI 1.1.2, and JSDK 2.0 before COOL:Joe. In addition, we also installed the I-Net Sprinta JDBC driver.

The installation process went smooth for both our server and development workstations. It took approximately 25 minutes to install the complete COOL:Joe environment. During the installation process, the installation program found our Java SDK and JSDK directories with no problem and configured COOL:Joe to work with them. We were also prompted to enter the directory for the Sun EJB support files. The installation program successfully created this directory and configured COOL:Joe to use it in its classpath.

The installation for both our server and developer workstation machines required approximately 130 MB of hard disk space. However, all of our machines used for this evaluation had significantly more hard disk space remaining.

JNDI is installed as a part of the EJB support. If you have JNDI installed elsewhere, be careful to make sure that the classpath is setup to use the correct jar file. This is especially important if your system has multiple versions of JNDI.

After installation read the readme files for each product to get the latest information. You can access to these files from the start menu.

Configuration Tools

COOL:Joe comes with a tool, COOL:Joe Configuration Tool that allows complete configuration of your COOL:Joe environment. This includes the classpath used for java and jar files to reference in your projects. This tool is detailed in the COOL:Joe Product Suite above.

Documentation

Help Facility

All components of the COOL:Joe product suite have an integrated help facility that can either be brought up from the Help Menu of the tool that you are using, by selecting the Help button that is on many of the windows and dialog boxes.

Installation Guide

The COOL:Joe Installation Guide is a very complete and comprehensive providing detailed instructions for setting up all components of COOL:Joe, including the required java components. In addition, it provides instructions for converting existing schema and encyclopedia files.

Configuration Guide

The Configuration Guide contains complete configuration information for setting up the environment. On-line help for the COOL:Joe Configuration Tool contains complete information on using the tool to configure COOL:Joe.

Tutorial Guide

The COOL:Joe Tutorial Guide is complete and comprehensive using an illustrative example that takes you from specifying the component in COOL:Joe all the way to deploying and testing the component as an EJB.

Full documentation for COOL:Joe comes as a help file that is accessible off the Toolbar Help menu. This help file contains the complete tutorial for getting started using COOL:Joe. The tutorial covers all aspects of how to use COOL:Joe to create java components and EJBs. The tutorial is “interactive” in that you can have the tutorial running in a separate window as you go through the steps in COOL:Joe. The tutorial follows a structured development discipline and approach that you should follow in creating your EJBs.

Development

General

Integrated Development Environment

COOL:Joe provides all the features and functionality expected in an integrated development environment. This includes an integrated Project Window that provides full access to all elements of your project, an Editor and debug environment. In addition, the environment supports importing files of various formats as well as importing and exporting of XML files.

Tutorial

The tutorial provides a very comprehensive and in-depth introduction to the features and facilities of the tool. More importantly, it follows a structured process with the steps required to work with the environment to build and test java components and EJBs.

After completing the tutorial, you will be in a position to use the environment productively to generate EJBs.

We ran through the tutorial end-to-end. We found it allowed us to certify our environment and to work out any issues in the environment.

Code Generation

COOL:Joe, like other Sterling Software development products, does a superb job at code generation from specifications. COOL:Joe provides a component-based environment similar to COOL:Spex that allows you to completely specify your component.

COOL:Joe automatically generates code to support database operations, persistency support, EJB support, and testing. You do not have to write one line of SQL and JDBC code. The COOL:Joe Persistence Wizard takes care of all the gory details saving the developer a lot of time on code that is error prone at times. Two of the Editor’s smart features, Smart Expansions and Smart Macros, supplement the code that is generated by the various wizards, by providing instant access to customized code generation facilities supporting operations such as reading from and writing to database objects.

One of the biggest strengths of COOL:Joe is its ability to generate test code for your components. COOL:Joe’s test Harness Wizard will create test drivers for your component in the form of java applications, servlets or both. You have the ability to specify which methods you want to test. Optionally all this test code can be packaged as a jar file.

Developer Productivity Features

The Editor’s smart features save the developer a lot of time and prevent error-prone code from being developed and tested. Smart Expansions and Smart Macros provide a rapid way to generate and insert support code into the appropriate place in your component implementation code files.

Wizards are available off elements in the project tree. These wizards are clear and provide a quick way to perform labor intensive and error-prone operations such as creating database support code. The Test Harness’s code generation facility saves the developer a lot of time creating code that is not considered value-add.

The environment is customizable using the Preferences Window. COOL:Joe’s project orientation and package organization, organize the various elements of your project, including java code, documentation captured in Microsoft Word and Microsoft Excel as integral elements of your component specification package. You can also “import” multimedia and image files into your project as well. No longer will you have to search for these files across your hard disk – COOL:Joe packages everything as an integrated and easily navigable project.

Smart Help provides instant access to detailed Java SDK documentation. To use the Smart Help feature in the Editor you need to install the Java SDK Documentation. Specify the location in the Preference Window - Editor . If you install the documentation before installing COOL:Joe, the installation process will locate the correct directory and set the path.

Development Discipline

COOL:Joe promotes a component-per-developer development process. Models for components should not be shared across the network and component development should be done in isolation on developer workstations.

During our evaluation, we successfully allocated the development of eight components to three developers. The developers were successfully able to develop their components, test them, package as EJBs, test the EJBs before deploying to the shared EJB server so that they can be used by other developers. In order to allow developers to test functionality that depends on other components, a set of stub components was created. This reduced the dependencies among developers during the development phase.

Debugging Support

The debugging environment is comprised of three elements – Debug Tool Window, message log, console output window, and Debug Tool Explorer. To debug a class or component select it in the project tree and chose Test from the short cut menu. Full documentation is available from the help menu, which not only details the debug process but also has in-depth information on all debug environment components.

The Debug Tool Window provides full access to the entire debugging environment. You select which windows to view including the event log, message log, explorer and console output window. In addition, you can load applications and applets as well as attaching to a remote Java virtual machine or launch a Microsoft Virtual Machine application.

The Explorer gives you full access to every java attribute and method on your component. This includes not only your component, but code in your test harness and java run-time code as well. The console output window contains all output messages from you application and the run-time environment.

[image: image52.bmp]Figure 10 - COOL:Joe's Debugging Environment is a full featured environment.

Testing Support

The Test Harness Wizard allows you to create a complete testing environment for your component and EJB. You can choose which methods you want to test on and how you want to test them. With the wizard, you can create either a test java application or an HMTL/servlet combination. In addition, these test harnesses are stored as packages within your project tree. In addition, when the test harnesses are built by the Build Wizard you can save them as jar files. This then allows the reuse of the test harnesses in testing environments such as string , integration and system test.

[image: image53.bmp]Figure 11 - Testing locally and remotely

The java application contains test code that directly calls you component’s methods while the HTML file calls methods on a servlet that in turn calls the methods on your component. The wizard allows you to generate either or both.

During our evaluation, we always generated both application and HTML/servlet and tested with both. The Debugging tool works with both approaches for developers, but we found that testing from non-development environments, such as a string test or system test environment that the HTML/servlet combination was easier to use.

Import Capabilities

COOL:Joe can import a variety of files into projects including Java files, HTML files, image files, text files, multimedia files and Microsoft Office files.

These files are added to a package in your project tree integrating them and making them an integral component of your project.

[image: image54.bmp]Figure 12 - Importing Files into COOL:Joe

XML Support

COOL:Joe enables you to export your model to XML. After exporting your model to XML, you can import the XML file into another COOL:Joe model or into COOL:Spex model. This is especially useful in multi-developer environments allowing members of a development team can share models among them by using the XML export/import feature.

Export Capabilities

COOL:Joe can export model files as XML files. This is detailed above.

Wizard Support

COOL:Joe, through its set of wizards, generates a significant amount of code including test harness code for testing your java components and EJBs.

Wizard
Description

Build Wizard
Builds all the code necessary to support a java component. Used to build projects such as when updates are made to code.

DDL Generation Wizard
Builds DDL to create database for objects.

Deployment Wizard
Used to configure COOL:Joe environment to support distributed EJBs. Used to deploy your component class files as an EJB in an EJB Server.

EJB Generation Wizard
Transform a java component into a packaged EJB. Create required deployment descriptors and support code.

File Import Wizard
Allows external files to be imported into packages in a COOL:Joe project.

Persistence Generation Wizard
Generates support classes and component framework classes that support Java Database Connectivity (JDBC). Enables your component to access data in a DBMS.

Specification to Implementation Wizard
Generates initial implementation classes for a component from a component specification.

Test Harness Wizard
Generate code to support testing of java object and EJB methods.

Table 6 - Summary of COOL:Joe Wizards

Development Process Support

Both COOL:Spex and COOL:Joe support component-based development and have for some time. This fits in perfectly with the component nature of EJBs. If you are a veteran COOL user, the process will be natural for you – all you will have to learn is nuances of the EJB model and architecture.

COOL:Joe ties all the pieces of EJB development together into a nice package. While COOL:Spex provides the analysis and design environment, COOL:Joe provides the implementation environment. Components developed in COOL:Spex are transformed into java components and EJBs using COOL:Joe’s multitude of wizards that make the overall process a snap.

Code and specifications are contained in packages. These packages help organize the various elements of a model such as component specifications and code, including implementation and test code. In order to successfully deploy EJBs that have unique class name, a structured and standard naming convention and packaging convention is required.

The COOL:Joe Development process is straightforward and is comprised of the following steps:

· Create Shared Specification Model – Use COOL:Spex to create a fully specified component model for your application and components.

· Copy model to COOL:Joe – Using the Component Manager, the COOL:Spex model is converted into a COOL:Joe model.

· Allocate Component to Developer – In this step, the COOL:Joe component model is partitioned into discreet components

· Develop Component – In this step the developer creates the component (transforms the component specification into the corresponding java classes) and implements the methods that were specified in the model. In addition, the developer runs wizards to create persistence support, generate DDL.

· Build Component – In this step, the developer runs the build wizard to create executable .class files for all the java code.

· Test Component – The developer runs the Test Harness Wizard to generate the test code as either a java application, HTML/servlet combination or both.

· Build EJB – in this step, you use the EJB Generation wizard to create all the required EJB support code customized to your component.

· Deploy EJB – In this step, the Deployment Wizard is run to generate the correct deployment support for your EJB and deploy it to the selected EJB server environment.

· Test EJB – In this step you create the test harness and use them to test the EJB in the deployment environment. We used the same harness to test the EJB in the local development environment and then in the shared EJB server environment.

The figure below illustrates the entire process as a set of three macro steps supported by discreet development steps that an analysts, designer and developer would perform. Specify Component contains the multitude of steps that create the entire component specification. Either COOL:Spex or COOL:Joe can be used to specify the component. COOL:Joe supports iterative processes in the Develop Component step, supporting a development/test cycle that leads to quality code. Once the component is tested, it is transformed into an EJB. There is a feedback loop to the Implementation step if problems are discovered during the Develop EJB step.

[image: image55.bmp]
Figure 13 - The Development Process

The table below maps this process to which tools is used for each step. Optionally, the component specification can be developed in COOL:Joe

Process
Wizard/Tool

Create Shared Specification Model
COOL:Spex

Copy model to COOL:Joe
Component Manager

Allocate Component to Developer
Component Manager

Create Component Implementation
Specification to Implementation Wizard

Develop Component
Persistence Generation Wizard, DDL Generation Wizard, COOL:Joe Editor

Build Component
Build Wizard

Test Component
Test Harness Wizard, Debug Tool

Build EJB
EJB Generation Wizard

Deploy EJB
Deployment Wizard

Test EJB
Test Harness Wizard, Debug Tool

Table 7- Wizard and Tool Support for Development Processes

Team Development

Out of the box, COOL:Joe does not provide support for team development, including configuration management and versioning. Sterling recommends a parallel development process when using COOL:Joe. Models should not be shared between developers. If models need to be shared, they should be exported as XML files and imported into the target model as an XML file.

Version Management

There is no built-in support for versioning. However, it is easy to add versioning support to your projects by putting the COOL:Joe model files under Configuration Management. This is aided by the fact that we allocated components on a developer basis.

We successfully used PVCS to place each developer’s environment under version management. In addition to the model file, we placed the component source code files in PVCS. We set up each developer’s workstation to check in and check out from the appropriate source directories.

Configuration Management

COOL:Joe offers no native support for Configuration Management. This is not necessarily a bad thing. Some development environments have already standardized on a Configuration Management Environment such as Visual SourceSafe or PVCS. Adding COOL:Joe models and generated code to one of these is relatively straightforward.

We successfully placed COOL:Joe products under configuration management using PVCS. Since our configuration management environment is PVCS-based, this was a straightforward process and relatively easy to implement.

Database Support

Databases Supported

COOL:Joe supports all relational databases that have a corresponding JDBC Type 4 Driver. This includes Microsoft SQL Server, Oracle, DB/2, Sybase, etc.

COOL:Joe provides database connectivity via JDBC. A type 4 JDBC driver is required.

If you are developing multiple components that go against different databases, you must keep track of them manually. Before generating any persistence and database support code, verify and change the database configuration to match the database for your component.

The Persistence Generation Wizard generates all the code required to connect your components to a database. This includes JDBC access code customized to your database. You can also reverse-engineer database tables bringing them into your model.

Persistence Support

COOL:Joe takes care of supporting persistence for your components. Your Java components can be stored in a variety of databases including Microsoft SQL Server 7.0, Oracle 8.x, and DB2 or any relational database that has a Type 4 JDBC driver.

COOL:Joe takes a different approach from other tools in supporting persistence. Those tools typically require that you create your database and the tables before developing your objects and components. They have wizards that create the objects from database tables. COOL:Joe’s Persistence Wizard does it the other way – you define your objects and the wizard generates the supporting database classes and DDL that you run against your database server to create the table(s).

You indicate the JDBC information in the Preferences Window under Deployment. This is a global setting for all your components so you have to change the values if you want to use different data sources across your EJBs. These values are then stored in a special properties file, StandaloneComponent.properties. Since this is a text file, you can edit the JDBC information directly. Sterling Software plans to store this information in the model in a later release of COOL:Joe.

Since you can only indicate a single JDBC data source for a component, you cannot access multiple databases from a single EJB. This is less of a COOL:Joe issue and more of an EJB issues stemming from database connection pooling.

The way around this would be to have a method in one EJB call a method in another EJB. These EJB's could be connected to different databases through different JDBC Connection pools.

DDL Generation Capabilities

The DDL Generation Wizard generates DDL that is used to create database tables that support persistent classes of your component. You simply load this file into your database’s interactive SQL program, such as Query Analyzer in Microsoft SQL Server 7.0, and run the script. This creates the database objects, including tables and indices, to support the persistent objects in your component. These tables map directly to database table objects created by the Persistence Wizard. The figure below shows the DDL generated for a simple object in the COOL:Joe tutorial.

--

-- This DDL was generated for Microsoft SQL Server

--

-- To install the DDL:-- Resolve warnings from the wizard's output messages,

-- Start MSSQL,

-- Enter "Server", "Login Id", and "Password"->Connect,

-- File->Open,

-- Select your ".sql" file

-- Query->Execute(Ctrl+E)

--

-- Note: It is recommended that you make database definition modifications

-- to the model and regenerate the DDL, rather than modify this file

-- directly.

--

create table Event

(

 description varchar(255) not null,

 eventIdentifier int not null

)

go

alter table Event

 add constraint EventIdentifier primary key clustered (eventIdentifier)

go

Figure 14 - Typical DDL Wizard SQL File

In addition to the complete DDL sql required to generate the table and its primary key, it even contains directions for how to use it with your database.

Connectivity

Database connectivity is achieved using a JDBC Type 4 driver to a relational database. During the evaluation, we used both the WebLogic jdbcKone/MSSQLServer4 driver and I-Net Software’s I-net SPRINTA Type 4 JDBC 2.0 driver, Version 1.2.2.

We used both named pipes and TCP/IP as the transport protocol with no observed problems and no observed differences. For TCP/IP, we used the default communication port, 1433.

Java Support

COOL:Joe is a complete Java Development environment that offers full support for implementing and testing java components and EJBs. COOL:Joe’s java environment is summarized in the table below.

Functionality
Product

EJB Server
WebLogic 4.03

JDK
JDK 1.2.2

Java Wed Development
JWSDK 1.0

JNDI
JNDI 1.1.2

EJB
SUN Ejb 1.0 support classes

JDBC
I-Net Sprinta Type 4 Driver,

WebLogic jdbcKona Type Driver

Table 8 - Summary of Java Environment

EJB Support

COOL:Joe has full support for EJB 1.0 development and deployment. COOL:Joe’s wizards allow you to easily move your java components to an EJB by providing code that packages your component as an EJB. In addition, the test Harness Wizard will generate the code necessary to test your EJB from both a java application and an html page.

An inordinate amount of code is required to have EJB “do its magic.” This includes code that supports two client interfaces, support sessions and integrate with the EJB container and server it is running in. COOL:Joe does its magic by generating all that code for you. The figure below shows the architecture of an EJB. COOL:Joe generates all the code for the rounded-box objects.

The EJB Wizard creates an EJB from a component by generating all the necessary support code, including:

· Ejbproxy package – contains code for the EJB proxy object including the component implementation for the EJB proxy used to execute business methods within the EJB and the EJB proxy class used to execute within the EJB from a calling machine.

· Remote package – contains code for the remote interface. This includes the remote version of the component’s interface(s), the session bean’s home interface and the session bean’s remote object interface.

· SessionBean – Implementation object for the session bean, responsible for calling the business component.

· SessionBean class – Responsible for calling the component.

In order to build the EJB, copy the session package to your project and run the Build Wizard. This then will create a packaged EJB jar file that contains your entire component. In addition, the EJB will be deployed to your EJB server environment.

Figure 15 - The EJB Architecture[image: image56.bmp]
If you want to test the functionality of your EJB, run the Test Harness Wizard on your project and select Invoke the method using the EJB proxy to ensure that the correct test code is created.

JDBC

A Type 4 JDBC driver is required. We successfully used both I-Net’s Sprinta driver as well as WebLogic’s jdbcKona driver for Microsoft SQL Server 7.0.

JNDI

JNDI, Version 1.2.2 is supported.

EJB Server

COOL:Joe works cleanly with BEA Systems WebLogic Application Server, Version 4.0.3. We have not completed our evaluation with IBM’s new WebSphere 3.0 Application Server or WebLogic 4.5.

Servlets

COOL:Joe requires a servlet engine to be able to test components and EJBs using the HTML/servlet method. We utilized the servlet engine that was installed as part of the Java Web Server Development Kit (JWSDK) as well as the JRun servlet engine. We did not compare the two servlet environments as part of this evaluation.

Deployment

Generate Deployment Code

COOL:Joe’s Deployment Wizard creates the required code to support deployment of an EJB to a specific EJB server. It creates the required deployment descriptor as well.

Packaging Support

COOL:Joe’s Build Wizard packages your java code in jar files in packages that you specify in the wizard.

Run-time

Java SDK Support

COOL:Joe supports Java 2.0 Version 1.2.2

Servlet Support

COOL:Joe supports the Java Servlet 2.0 specification. Any product that supports JSDK 2.0 works with COOL:Joe, including JRun and Javasoft’s JSDK 2.0. This is required if you want to test your java components and EJBs using the HTML/servlet functionality.

Summary of Results

Category
Criteria
Results Summary

Analysis and Design

Notation
Supports UML and all its associated diagrams.

Methodologies
Supports Catalysis for Component-based analysis and design.

Integration with Development Environment
Component Manager provides ability to transfer COOL:Spex models to COOL:Joe very easily and cleanly

Process
COOL:Joe and COOL:Spex support component-based analysis and design. This hinges on designing interfaces that capture behavior between components and the attributes of the component.

Installation, Configuration and Administration

Installation Process
Installation process simple and straightforward. Provides required Java components such as Java SDK and JWSDK if not previously installed

Configuration Tools
COOL:Joe Configuration Tool provides complete configuration of the COOL:Joe environment and Java environment.

Documentation

Help Facility
All COOL:Joe components including COOL:Joe, the debugger, and Configuration Tool come with comprehensive outline help.

Installation Guide
Complete and comprehensive guide to installing COOL:Joe.

Configuration Guide
The Installation Guide contains complete configuration information for setting up the environment. On-line help for the COOL:Joe Configuration Tool contains complete information on using the tool to configure COOL:Joe.

Tutorial Guide
The COOL:Joe Tutorial Guide is complete and comprehensive using an illustrative example that takes you from specifying the component in COOL:Joe all the way to deploying and testing the component as an EJB.

Development

IDE
COOL:Joe has a complete and feature-rich IDE.

Tutorial
The tutorial is comprehensive and covers specifying, implementing, testing and deploying a Java component and EJB.

Code Generation Facilities
COOL:Joe, through its set of wizards, generates a significant amount of code including test harness code for testing your java components and EJBs.

Round Trip and Reverse-Engineering Support

Developer Productivity Features
The smart features of The Editor save significant development time.

Development Discipline
COOL:Joe promotes a component-per-developer development process. It is relatively easy to allocate components on a developer basis.

Debugging Support
COOL:Joe comes with a full-featured debugging environment

Testing Support
COOL:Joe's Test Harness Wizard generates code enabling you to test any and all methods on your component.

Import Capabilities
COOL:Joe can import a variety of files into projects including Java files, HTML files, image files, text files, multimedia files and Microsoft Office files.

XML Support
Support for exporting and importing COOL:Joe models as XML.

Export Capabilities
Export model files as XML.

Wizard Support
COOL:Joe has a multitude of wizards that walk you through

Development Process Support
Both COOL:Spex and COOL:Joe support component-based development and have for some time. This fits in perfectly with the component nature of EJBs. Both COOL:Spex and COOL:Joe support component-based development and have for some time. This fits in perfectly with the component nature of EJBs. Follows a well-defined set of development steps.

Team Development

Version management
There is no built-in support for versioning. However, it is easy to add versioning support to your projects by using a tool such as PVCS.

Configuration management
COOL:Joe offers no native support for Configuration Management. However, you can place COOL:Joe products under configuration management in a relatively straightforward manner.

Database Support

Database
COOL:Joe supports all relational databases that have a corresponding JDBC Type 4 Driver. This includes Microsoft SQL Server, Oracle, DB/2, Sybase, etc.

DDL Generation Capabilities
The DDL Generation Wizard generates DDL that is used to create database tables that support persistent classes of your component.

Persistence Support
COOL:Joe takes care of supporting persistence for your components via the use of the Persistence Wizard.

Connectivity
Database connectivity is achieved using a JDBC Type 4 driver to a relational database. Both named pipes and TCP/IP were used as the transport protocol with no observed problems and no observed differences.

Java Support

EJB Support
COOL:Joe has full support for EJB 1.0 development and deployment. COOL:Joe’s wizards allow you to easily move your java components to an EJB by providing code that packages your component as an EJB.

JDBC
A Type 4 JDBC driver is required. We successfully used both I-Net’s Sprinta driver as well as WebLogic’s jdbcKona driver for Microsoft SQL Server 7.0.

JNDI
JNDI, Version 1.2.2 is supported.

EJB Server
COOL:Joe works cleanly with BEA Systems WebLogic Application Server, Version 4.0.3.

Servlets
COOL:Joe requires a servlet engine to be able to test components and EJBs using the HTML/servlet method.

Deployment

Deployment Support Code
COOL:Joe’s Deployment Wizard creates the required code to support deployment of an EJB to a specific EJB server.

Packaging Support
COOL:Joe’s Build Wizard packages you java code in jar files in packages that you specify in the wizard.

Run-time

Java SDK Support
COOL:Joe supports Java 2.0 Version 1.2.2

Servlet Support
COOL:Joe supports the Java Servlet 2.0 specification.

Table 9 - Summary of Evaluation Results Matrix

Building Components in COOL:Joe – Steps to Building Applications

Workflow Steps

The table below summarizes the steps that you, as a developer, would follow when using COOL:Joe to develop Java components and EJBs.

Phase/Process Step
COOL:Joe Component

Install and Configure

Design, Implement and Test Java Code

Obtain/Create Component Specification
COOL:Joe

Transform Component Specification to Component Implementation

Specification to Implementation Wizard

Implement Component

Make Class Persistent
Persistence Wizard

Generate DDL
DDL Generation Wizard

Create Database Objects

Define Business Logic
Editor, Smart Macros

Build Component(s)
Build Wizard

Round Trip Engineer Code

Import Java Code
Import Wizard

Edit Java Code and Update Model
Editor

Generate Test Harness
Test Harness Wizard

Test and Debug Components
Test Environment

Editor

Debugger Tool

Develop, Deploy and Test EJB

Configure EJB Server
EJB Server Configuration

Setup Deployment Preferences
Toolbar – Preferences

Wrap Component as EJB
Deployment Wizard

Build EJB
Build Wizard

Generate EJB Test Harness
Test Harness Wizard

Test and Debug EJB

Test Environment

Editor

Debugger Tool

Table 10 – Matrix of COOL:Joe Components and Development Process Steps

Installation and Configuration

You will need to have a JDBC Type 4 driver installed to use the persistency features of COOL:Joe. If you are using WebLogic as your server, you can use their JDBC Kona drivers or install other drivers such as Sprinta. (Note – You should consider distributing a type 4 driver with the product. This will allow you to create a “standard” configuration that you use in the tutorial to “certify” the environment.) This is configured in the Tool->Preference panel, Deployment. Here you enter the JDBC driver and the JDBC URL for your installed type 4 driver.

One caveat - Verify your database environment first. This includes the JDBC driver name and the JDBC driver URL. These should be from your standard Java configuration. Also, test you JDBC connectivity. Use Telnet to verify that TCP/IP connectivity is correct. On one of our machines, TCP/IP connectivity to SQL Server 7.0 was not working and we received a component creation error when we attempted to test our components. Changing the JDBC driver to use named pipes alleviated the error.

Design, Implement and Test Java Code

In this phase, you focus on creating the specification and implementation for your java components. After creating the specification, you develop your component by implementing the methods on the interfaces that you specified. The Editor and the project window will be the two facilities of COOL:Joe that you will use the most.

Obtain/Create Component Specification

1. Create a new model – Store in your project directory.

2. Create Component Specification Package – This is accomplished by right-clicking in the project tree and selecting Specification Package.

3. Create Specification Type – In the next step, you create a specification type that specifies the data structure for the component. This is also used by the test harness wizard to create an object that carries data between the test code and the component implementation code.

4. Edit Specification Type – In this step, attributes are added to the specification type. This is done through the Properties window. Here the type of the attribute as well as its precision (length for text fields) is specified. Optionally, comments and description for the attribute can be entered. We recommend that you take advantage of this feature and put as much information as you can in these fields. This becomes the “documentation” for your component.

[image: image6.jpg]
Figure 16 – Edit Specification Type Window

5. Create Interface Type – An interface type captures behavior in the form of one or more methods. In order to add an interface type right-click on the target specification package and select Interface Type. Prefix the name with a capital I in order to easily distinguish interfaces from other elements. After the interface element is created, operations are added. Right-click on the operation in the Project Window to bring up the Properties window. This window has five tabs. Select the Result Type and Parameters tab to specify the result type of the operation. The Select Data Type for Type Use Window shows all the possible result value types (see diagram). Notice that in addition to the built-in types, it also includes any types that you have created including Interface Types and Specification Types as these are valid result types. Now you add parameters for the operations that you added. This is done from the Result Type and Parameters tab. The Add Parameter Window allows you to specify the name, the type, and if the parameter is an in, out, or inout parameter. After creating the parameter by specifying its name, select the type for the parameter, as illustrated in the diagram below.

[image: image7.jpg]
Figure 17 – Specifying interface methods using the Operation Properties Window
[image: image8.jpg]
Figure 18 – Specifying an interface parameter using the Edit Parameter Window
6. Create Attributes – Add attributes to your objects and interfaces.

7. Create Operations – Add methods to your interfaces and components.

8. Create Component Specification Object – in this step, you identify the interfaces that your component will implement. Right-click on the package specification and type in the name of the component specification. Then specify the interfaces that are offered by the component. This diagram below illustrates the simple and clear interface that COOL:Joe provides for navigating your package hierarchy and selecting interfaces.

[image: image9.jpg]
Figure 19 – Selecting Component Interfaces

When you save your specification for the first time, COOL:Joe will prompt you to save your component model. The model is the total representation of your component and stores all information about your component. From the model file, you will be able to generate the code to implement the component.

After you create a new model, the Project Window is populated with the two default system packages – java and sun. During the component implementation process, you will be adding packages using the Project Window. The Project Window holds the project tree for your project, providing an organized hierarchy and namespace for all elements that comprise your component.

Upon completion of the Obtain/Create Component Specification process, you have a complete component specification. Notice that there was no coding at all. Every operation was driven by the component-oriented design features of COOL:Joe. In addition, COOL:Joe’s easy to use interface made the process simple and straightforward. What we found quite attractive is that COOL:Joe makes all types available to you in it’s selection boxes allowing you to use types that you create as return values and parameters to operations on your interfaces and components.

 Most importantly, behavior of components was captured in the Interface Specifications that you created. You then “attached” this behavior to a component by selecting that the interfaces that the component implements.

Transform Component Specification to Component Implementation

The next step in developing your Java component is transforming the specification model that you created into supporting code. You use the Specification to Implementation Wizard for this process to transform the component specification to code.

1. Run Specification to Implementation Wizard – Right-click on the component specification that you want to transform. This brings up the Specification to Implementation Wizard.
2. Create new package – Create a new package to hold your objects. As with all Java packages, these need to be unique. You need to create a scheme to ensure that your packages are globally unique. This can be based this on your domain name. In fact, Sun recommends that you reverse the domain name to use for your packages.

After the package is created, you will see that the wizard has created new system packages in a hierarchical format for each element after a period in the name that was specified. Also, notice that this same hierarchy is reflected in the Project Window (see figure). At this point, you can click on the Finish button to complete the wizard. If you have to regenerate framework classes, you can select the next button to complete the wizard or proceed to Generate Framework Classes.

[image: image10.jpg]
Figure 20 - Specifying the package for the component

3. Generate Framework Classes – The next step of the wizard allows you to regenerate framework classes if required. Most often, this does not have to be done.

4. Complete Transformation – The wizard completes by generating code to support the specification. The wizard has a nice progress window in which you can see exactly what is occurring via clear status messages. A process bar below the status control shows how far the process has proceeded. You can print this completion report or save it to a file for your records. The figure below shows the detail that COOL:Joe provides.

[image: image11.jpg]
Figure 21 - Completing the Transformation

One the strengths of the product is the completion report for each wizard. We stored each report in the project directory (you can actually add the report to the project tree using the Import feature as well). This allowed our development team to store all information related to the total development process of a component as well as providing an audit trail to identify and repair potential problems and issues.

[image: image57.bmp]
The resulting code that is generated is placed in the source directory in your COOL directory. If you navigate there, you will see that there is a directory structure that exactly follows the package created in the wizard. In this case, four files were created – one for the interface, one for the component, one for the specification type and a properties file, which holds properties for JDBC connectivity, which id used later when implementing persistence for your component. This is reflected in the Project Tree, where under the com/easytouse/seminar system package there exists a properties file, an interface file, a class objects to hold the specification type and component.

These match the physical files mentioned above. As you can see, the project tree provides full access to all files that support your component and they match the physical location in the source directory. Because of this, you have no need to navigate the hard disk at all.

In addition, a sterling system package is created that contains all the required support code for creating a run-time instance of the component as well as code to support packaging the component. This includes both interface and class objects as listed below:

[image: image58.jpg][image: image59.bmp]
Figure 22 – Project Window

As you can see from the list above, COOL:Joe generates all the “support” code for your component and packages it away from your component processing code. This is one of the great strengths of the tool – automatic support code generation. This allows you, the developer, to focus on developing your component mainline and business processing code and not on EJB component and component support code. This abstraction allows you to be much more productive and allow the development environment to function as it should.

Implement Component

After creating the initial implementation for your component, it is time to develop the component. You will “fill in the blanks” in the code that the Specification to Implementation Wizard generated for you with code to support the business logic and functionality of your component. The Implementation Component process consists of a set of steps that captures all the processes required to develop and test your component.

Depending on the requirements for your component this might entail generating persistence support and corresponding database tables. In addition, you can use the Test Harness Wizard to generate a complete testing environment customized to your component.

Make Class Persistent

One of the first activities you perform on your new component is specifying how it will be “persisted.” This entails determining which attributes of your component will be stored in the database, allowing the component to store its attributes in database tables as well as allowing the component to retain state across lifetimes. In conjunction with the DDL Generation Wizard, you can completely specify the database functionality of your component.

You build a persistent class for any object class that has attributes that need to be stored in a database. Before performing any persistence operations in the environment, confirm that persistent support is turned on for COOL:Joe. This is done of the COOL:Joe Toolbar under Tools, Persistence Generation.

1. Select Persistent Target – In the Project Window, navigate to the target class object to make persistent. Make sure that you navigate down the package tree and not the component specification tree. Right-click and choose Generate Persistence.

2. Select Database Table Package – You now identify the package where the table objects that the wizard creates will reside. This defaults to DBTables, but you are free to create a new package as well. From our experience with COOL:Joe, the defaults selected in the wizards are usually sufficient. If you do chose to create a new package, follow any guidelines to ensure a consistent and maintainable development environment.

3. Select Class to store in Database – You are now prompted to select the class(es) to make persistent and the name of the table to store the class(es). If you started the wizard from a class, that class will be pre-selected in the panel as shown in the figure below.

[image: image12.jpg]
Figure 23 – Selecting Classes to make persistent.

4. Generate Classes – The wizard gives you the choice of creating table objects or table objects and persistent support classes. Usually you will select to generate both. The wizard also prompts you to regenerate the framework classes. Usually you select No. The last step before generation is an acknowledgement prompt indicating what you have selected. Selecting Finish start the code generation process. Note the completion report for any errors or warnings. The completion report for this wizard details all the files that COOL:Joe generated for you.

[image: image60.jpg]
Figure 24 - The Persistence Generation Wizard completion report

After successful completion, the Project Window will have a new system package, DBTables. Expanding this package will show that an object has been created for each table you selected in the wizard and for each class there are attributes for each attribute in your class. In addition, the wizard created a primary key attribute that drives the mechanism for storing objects in the database.

The figure on the left shows that for the Event class that we made persistent, database fields were created for the two attributes – description and eventIdentifier. The wizard also created the primary key, EventIdentifier from the eventIdentifier field.

Figure 25 – Project Window with DBTables Package

In addition, a persistence system package, persist, was created under your component package that contains all the required support code for database persistency. This includes both interfaces and class objects as listed below:

Interfaces

· IPersistentEvent – Defines the object-specific persistent user methods, which allow you to retrieve and update persistent object data for a given object interface.

· IPersistentEventFactory – Defines the EventFactory-specific persistent methods.

Classes

· PersistentEvent – Entry point class for an application that needs to retrieve or edit persistent data.

· PersistentEventFactory – Implements the factory methods. This is used to create and locate persistent objects.

· PersistentEventPeer – Database-implementation specific class that is responsible for defining the SQL statements that the parent class uses for JDBC access.

· PersisitentEventPK – Represents primary key for the persistent object class.

Generate DDL

The Generate DDL Wizard walks you through the process of creating the supporting database objects for your persistent classes.

Expand your project tree in the Project Window to show you target implementation object and right-click and select Generate DDL. Optionally, if you want to generate code for a single class in your implementation you can right-click on that class and select Generate DDL.

1. Select Classes – From the list. select the table(s) for which you want to generate DDL. This list will be populated from the database table objects in your database package that was created by the Persistence Wizard.

[image: image13.jpg]
Figure 26 – Specifying Tables for DDL Generation

2. Specify DDL Generation Parameters – The next step is to indicate the target database and where the resulting sql file should be placed.

[image: image14.jpg]
Figure 27 – Specifying DDL Parameters in DDL Generation Wizard

This sql file is then run against the database to generate the correct table structures to support the persistent and data table objects that were created in COOL:Joe.

Create Database Objects

In this step, you take the .sql file created by the DDL Generation Wizard and “run” it against your database to create the database objects. What you do for this step depends, of course, on what database that is used. Since we used Microsoft SQL Server 7.0 for the evaluation, the steps below detail the operations for SQL Server.

1. Create Database – If required, the database needs to be created. Use the SQL Enterprise Manager to create the database on the target SQL Server machine. Navigate to the Database folders and choose New Database and type in the name.

2. Adjust Database Permissions – Right-click on the new database and select the permissions tab. Mark the Create Table entry. Close the Enterprise Manager.

3. Creating the Database Objects – Start the query program, in this case, Query Analyzer. Login into your server and select the target database. Open the sql file created by the DDL Generation Wizard and execute to create the database objects.

4. Add Data – Before testing you component, you should populate the table(s) with valid data. You can do this now or just before the Testing and Debugging step.

Define Business Logic

For writing business logic, you use the Editor to create new code to support the attributes and methods on your classes. Looking at a file that has been generated for you by COOL:Joe, you will notice several things:

· Automatic package name – COOL:Joe created a package entry in your file.

· Header – COOL:Joe’s code generation created a detailed header for each of your source code files that include the class name, the package name, the date it was generated, the id of the author and a change history section that you should used to add entries for your changes.

· Method Skeletons – COOL:Joe generates method skeletons for your component operations.

COOL:Joe has provided you with a source code file ready for you to start “filling in the blanks.” You do have to manually enter the correct import statements for your component creation and persistency support class packages.

The Editor user interface makes great use of visuals to make reading code and manipulating it quite easier. These features are expected in an advanced development environment and make working with the environment not only more enjoyable but also more efficient and productive.

· Color Keywords – Keywords are colored to help them stand out.

· Shading – System methods in a class are shaded to make them visually stand out from methods that are class specific and that the developer must implement.

· Interactive error condition indication – The Editor will make the background of any line that in which it believe there is an error yellow. This quickly allows you to track down any problems from syntax such as forgetting commas, etc.

The Editor has smart features that provide shortcuts to common operations. Two that we used quite a bit during our evaluation are Smart Expansions and Smart Macros.

Smart Expansions provides the ability to have the class editor create a significant amount of code to support operations inside you class implementation. Using Smart Expansions is just a right-click away. There are many options that you can choose from and depending on which one you choose you will be prompted for information that will allow Smart Expansions to do its “magic” and use the correct references, names, and attributes when generating code. For example, if you choose pRead, Smart Expansions will prompt you for the name of the class you want to read and the attribute to use as the primary key parameter. This operation then generates all the code necessary to support reading a persistent object using this primary key.

If you look at the code that is generated, you will notice the sheer amount and type of code that Smart Expansions generated for you. What especially stands out is all the exception handling code that is generated. As a developer, these are important items to handle but difficult and tedious to code. Fortunately, Smart Expansions does all the hard work for you. You just need to know what smart expansion to call and it does the rest.

Smart Macros provide a simple wizard interface to create customized but pre-canned code. Typically, you are prompted to enter names of classes and attributes and Smart Macros will generate the correct code for you. For instance, you can use Smart Macros to automatically create mapping code between your application classes and the corresponding persistent classes. You can also create your own Smart Macros to further customize your development environment.

Round Trip Engineer Code

Round trip engineering synchronizes changes in code with changes in the model. COOL:Joe’s solid round trip engineering features allow you to do the following:

· Import Code in existing source code files or jar files

· Reflect changes made in source code files in the model

Using round trip engineering, you can leverage your existing investment in Java code by making them an integral element of your COOL:Joe model. Another important point is that you can do this at any point in time – you don not have to do everything at the beginning of the development and implementation process. In fact, COOL:Joe’s perspective is code is utilized “just-in-time” in that you import on demand.

Importing Java Code

You use the Import Wizard to import existing Java source code files and jar files.

1. Start the Import wizard – From the Toolbar select File, Import.

2. Select File - Navigate to directory that holds your java file

3. Move File to Package - By default the file is imported into the common package. If you want to move this new project file into another directory, simply drag and drop into the target package.

You can now edit and treat this file just like any implementation file in COOL:Joe. You add properties and methods using the Properties window. The new methods that you add are then reflected in the code file.

Changing Class Interface

You use the Editor to update the interface of your class(es). COOL:Joe’s round trip engineering functionality will ensure that any changes that you make to the file are reflected and carried forward in your model.

1. Open source file – Using the Project Window, navigate down the implementation path, select source file and right-click and choose Edit.

2. Add new Method – Add a new method to your java class .

3. Close and Confirm Change – Choose to either save the changes or close the Editor for this file. COOL:Joe prompts you with a confirmation window to save changes to the model.

[image: image15.jpg]
Figure 28 – Confirmation of addition of new method to Imported code file

4. Update Model – If you choose to “commit” changes to the model, the project tree in the Project Window will be updated with your new method as shown in the figure below.

[image: image16.jpg]
Figure 29 - New method reflected in Model

Build Component(s)

You package your component(s) into a JAR file, which contains all the files that support component implementation and persistency. JAR files are built by creating a project in the model. Projects can be either created from the contents of a Java package or created empty and then defined.

1. Verify JDBC Settings - Before building the component, verify the settings for JDBC. Selects Tools, Preferences form the COOL:Joe toolbar and select Deployment. Make sure that the JBDC information is correct or type in new information for the name of your driver, its URL and the name and password to be used to log into your database (see figure).

[image: image17.jpg]
Figure 30 - Verifying JDBC Configuration information in Preferences Window
You will need to change this information if you change the data source for the component.

2. Create Project - Select the package that you want to create a project from and right-click and select Default Project. Type in the name and press the OK button. This will create a new project and place it into the project tree in the Project Window.

[image: image18.jpg]
Figure 31 – Creating the project in the Project Window
3. Run Build Wizard - To build the project, right-click on it and run the Build Wizard. Select the name for your project and its location in the project tree.

Upon completion, the Project Window, as illustrated in the figure on the left, will be populated with your new component project. You will now be able to build this component as a unit in the future by simply running the Build Wizard as you did above.

Expanding the project tree in the Project Window, provides you access to the implementation elements of your component, including source code files, properties files as well as internal implementation classes such as persistent classes and database objects.

From this tree, you will perform operations that affect the implementation and run-time aspects of your component. Here you can right-click on class to edit the corresponding source code file, edit properties files (if required), debug a source code file, etc.

Figure 32 – Completed project reflected in Project Window

Figure 33 - Completion Report for Build Wizard

Generate Test Harness

COOL:Joe components are tested and debugged before being deployed as EJBs by using the Test Harness Wizard to generate code that is used to test your component, including required Java code as well as required HTML. The test harness is a key element for testing the integrity and functionality of your Java code. Using the Test Harness Wizard, you create all the code necessary to test your entire component. In addition, you can customize what methods are tested by the test harness. This is aided by some of the code that COOL:Joe automatically generated for by using the other wizards.

1. Start Test Harness Wizard – Use the package tree to navigate, select the component implementation that you wish to generate the test harness for and right-click and select Test Harness Wizard.

2. Select Methods to Test – The next step is to select the methods that you wish to test in the Method List box.

[image: image19.jpg]
Figure 34 – Selecting methods for testing

3. Select How to Invoke Method – Next, you can choose to have the test harness invoke the method directly or via an EJB proxy.

[image: image20.jpg]
Figure 35 – Selecting how to invoke method

4. Select Invocation Style – The wizard gives you three choices for how to generate test code – Generate a java application to test each method that you selected previously, generate HTML and a servlet for each method, or generate both.

[image: image21.jpg]
Figure 36 – Selecting test method invocation style

5. Select Package for Panel Objects – You indicate which package should store the user interface objects and classes that are generated for the test harness. The wizard will automatically select TestPanels for you but you are free to create a new package.

6. Select Package for Java Classes – Next, you select the package that will contain the test harness classes. The wizard automatically creates the test harness package at the same level as the package for the component for which you are building the test harness. Again, you are free to create your own package to hold the Java code.

This process does take quite a while, but there is a lot of code generation going on which does take a significant amount of file I/O. The figure below shows the completion report for the Test Harness Generation Wizard. Notice all of the code that the wizard generates for you, in this case 10 Java files.

Figure 37 - Completion Report for Test Harness Wizard
Test and Debug Components

The debugging environment consists of three elements – The frame Window, the Browser and the Debug Tool Explorer. The Explorer gives the developer full access to every java attribute and method that constitutes the component. Not only does it provide access to code in your component as well as the test harness, you get access to the java run-time code as well.

1. Start Debug Environment – Right-click on the file that you want to test and select Test.

2. Set Breakpoints – You set breakpoints in the source code files.

Develop, Deploy and Test EJB

Configure EJB Server

In this step, you configure the target EJB application server environment to work with COOL:Joe. As we used WebLogic as our EJB server, we describe the process for WebLogic. You edit the weblogic.properties file to change the configuration and the run-time environment of WebLogic, modifying properties such as deployment descriptors and database connections pools.

COOL:Joe comes with all the necessary support files to use WebLogic as the EJB server. You need to run through the configuration process once for each EJB server you will use. We strongly recommend that you have configured the EJB server before attempting to run the Deployment Wizard for the first time. In addition to the information included here, the COOL:Joe help facility provide a systematic hyperlink process for validating and verifying the EJB Server.

1. Setup Weblogic EJB mapping on Development Machine - In order to access the EJB application server, in this case WebLogic, we recommend that you create a drive mapping which points to the WebLogic directory on the server.

a. Create Weblogic Drive Mapping - Map drive to the drive where WebLogic is installed

b. Add user classpath – Run the Configuration tool and add the weblogic/classes and weblogic/lib/weblogicaux.jar to the User Classpath field.

2. Install Deployment Support Classes - Copy support jar files from COOL:Joe exe directory to WebLogic classes directory. Extract these jar files by using the jar utility – This creates a sterling directory under com that contains all the support classes needed to use COOL:Joe and WebLogic.

3. Modify the Bean’s Deployment Descriptor - Perform this if you wish to change the deployment directory to another directory than c:\Weblogic\classes on your server machine. You must do this if you did not install WebLogic in c:\Weblogic. The steps to do this are as follows:

a. Start the WebLogic EJB Deployment Wizard – Start from WebLogic program group.

b. Add the WeblogicDeployment Bean - Select Add To List button to display the Specify Deployment Descriptor Source Selector. Choose the WeblogicDeployerSessionBean.ser from the Weblogic\classes\com\sterling\wizard\deployment\server\session directory.

c. Configure the descriptor – Select Stateless and note the EJB Home name, which in this case is WeblogicDeployer. You can change this if you want from the combo box. Modify the following in Environment tab:

i. Note the EJBHome name, which in this case is WeblogicDeployer.

ii. Change weblogic_deployment_root to the directory where you want to deploy your EJB JAR files.

iii. Deselect the Generate Weblogic Interfaces for this bean checkbox

iv. Click to done to complete process

If you want to deploy your JAR files to more than one location, you must deploy another deployment bean. Make sure that you change the weblogic_deployment_root to the new deployment directory.

4. Modify the weblogic.properties file – You do this to add connection pool information for WebLogic and From the Weblogic menu choose Utilities, Edit Server Properties. This brings up Notepad with the weblogic.properties files loaded.

a. Add reference to deployment bean – Locate the weblogic.ejb.deploy property and add drive>:/<Weblogic installation directory>/classes/com/sterling/wizard/deployment/server/session/WeblogicDeployerSessionBean.ser

b. Create Database Connection Pool - In order to support EJB deployment in Java Application Servers, you have to configure the database connection pool for the application server. For WebLogic, this is accomplished by modifying the weblogic.properties file. This needs to be done prior to deploying and executing your EJB component.

Locate the section entitled WEBLOGIC JDBC CONNECTION POOL MANAGEMENT.
Define a connection pool in the weblogic.properties file using the following format:

weblogic.jdbc.connectionPool.GSTpool=\
url=<JDBC URL>,\
driver=<JDBC driver>,\
initialCapacity=1,\
maxCapacity=2,\
capacityIncrement=1,\
props=user=<user ID>;password=<password>;server=<server name>;db=<database name>
weblogic.allow.reserve.weblogic.jdbc.connectionPool.GSTpool=guest

The JDBC URL and JDBC Driver information should be the same information that you entered into the Tool, Preferences window. The user ID and password need to be valid values that have been assigned to the target database, database name. This also should be the same as you entered when configuring JDBC in the Tool, Preferences window.

5. Add Deployment Root to Classpath - If you deployment directory is not set to the same directory as you Weblogic/classes directory than you need to add that deployment directory to the EJB Server’s classpath. This is done by running t3config from the weblogic/bin directory and specifying –classpath <deployment directory name>.

6. Restart the Server - Go to services tab in Control panel, press stop button, and Press Start Button.

Setup Deployment Preferences

This requires setting the JNDI parameters to allow the EJB to be located and set the JDBC parameters so the EJB can read from the database.

1. Specify JNDI Parameters – Open the Preferences window from the Toolbar. This requires setting the top two preferences – Initial Context Factory and provider URL. These might be filled in already to use the settings provided by your EJB server environment. For WebLogic these were filled in already and the default values were correct.

[image: image22.jpg]
Figure 38 - Specifying JNDI Settings

2. Specify JDBC Preferences – Here you specify the parameters required to use the EJB servers JDBC functionality. This includes connection poll information and JDBC driver information. This is required to use your appserver’s JTS functionality.

[image: image23.jpg]
Figure 39 - Specifying JDBC Settings

In order to support multiple deployment configurations, you can save each configuration that you create and use as a deployment profile. This allows you to easily change your deployment settings to support different databases and JNDI settings.

[image: image24.jpg]
Figure 40 - Setting up Deployment Profile for EJB

Wrap Component as EJB

This process uses the EJB Generation Wizard, which is invoked off the implementation object in the Project Window.

1. Specify Parameters – Here you choose the name for the session bean to hold your implementation object, the Home Interface name, the Remote Interface Name and the Home Interface JNDI name. The wizard creates intelligent defaults for these names by:

· appending SessionBean to your implementation object name

· prepending I for interface names

· EJBHome for Home interface names

· EJBObject for Remote Interface names

· the implementation object name for the Home Interface JNDI name.

[image: image25.jpg]
Figure 41 – Specifying EJB Generation Parameters

I would suggest your either accept these or create a standard naming convention that you use consistently across your projects.

2. Generate Component Framework Classes – As with all other code generation wizards, you are then prompted whether you wish to generate the component framework classes and as usual, you would select no.

Figure 42 - Completion Report for EJB Generation Wizard

Again, COOL:Joe generates a significant amount of code to support the EJB environment. This process generates a new package titled session that holds all the EJB support classes, including:

· ejbproxy package – contains code for the EJB proxy object. This includes ProxyRuntimeException, component implementation for the EJB proxy (named the same as your component) used to execute business methods within the EJB, and the EJB proxy class used to execute within the EJB from a calling machine.

· remote package – contains code for the remote interface. This includes the remote version of the component’s interface(s), the session bean’s home interface and the session bean’s remote interface.

· SeminarSessionBean – Implementation object for the session bean, responsible for calling the business component.

· SeminarSessionBean class – Responsible for calling the component.

Build EJB

This step requires adding the generated EJB classes to the component project and then building the project.

1. Copy the Session package to Component project – Right-click on the session package and choose copy. Navigate down the component project tree in the Project Window to your component package and right-click and choose paste. You will notice that your project package now contains a session package.

2. Build the project – Follow the same set of steps as you did when building your component. Right-click on the project and select Build.

Figure 43 - Completion Report for Build Wizard for EJBs

Generate EJB Test Harness

This set of steps is the same as for Java components. However, in this case, the target for the invocation will be EJB methods and the EJB will be running in the deployment environment that you specified. This could be on your local machine, if it is configured as an EJB server, or a remote machine that is dedicated as an EJB server environment.

Test and Debug EJB

You test and debug your EJB components just as you did for Java components. You should run the same test scripts that you did for your component. This will verify that the functionality that is captured in the business logic behaves the same packaged in an EJB.

About Quantum Enterprise Solutions, Inc.

Quantum Enterprise Solutions, Inc . is a recognized leader in enterprise application integration and middleware and Java technologies. Clients look to Quantum to provide advisory as well as specialized integration and middleware services. Quantum’s unique approach to the customer experience, Total Customer Solution TM, provides an end-to-end integrated approach to the overall software development and deployment process. Using its Enterprise Application Integration Methodology TM, a powerful combination of tools, techniques and strategies, Quantum works with corporate decision-makers allowing them to make appropriate strategic planning and technology assessment, investment and integration decisions. Quantum then provides specialized services helping the client to implement a consolidated integration platform.

By combining Training and Education with hands-on consulting, advisory and architectural services, Quantum’s elevates the overall customer experience as well as return on investment. Quantum’s clients include numerous Fortune 500 companies such as PeerLogic Inc., Sterling Software, Bank One, Motorola, Ernst and Young LLP, ADP, Philip Morris, BMW, Deloitte and Touche LLP, DRT Systems, Merrill Lynch, Bear-Stearns, Salomon Smith Barney, Cahners and Scudder Kemper. Quantum is an active member in the Object Management Group as well as the International Middleware Association. Quantum’s Director of Technical Services, Peter Fischer, is Vice Chair of the Technical Committee.

Conception to CompletionTM

QUANTUM

Enterprise Solutions, Inc.

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

Class Objects

ComponentDebugWriter

ComponentException

ComponentProperties

ComponentRuntimeException

ContextCreationException

InitialComponentContext

Interfaces

IComponent

IComponentContext

IComponentContextFactory

IComponentDebug

IDatabaseConnection

IPersistentFactory

Synchronizing Event

	pcs is ignored because it is a transient,class, constant, or derived attribute.

Preprocess completed successfully.

Class transformed to Table successfully: PersistentEvent

Class to table transformation completed successfully.

Preprocessing class PersistentEvent

Preprocess completed successfully.

Exporting of classes completed successfully.

E:\cool\exe\GenPlusCmd10 "E:\cool\models\seminar.jim" E:\cool\exe\pgen\PgenApp.asp STDOUT SimpleClass "com.easytouse.seminar.persist.PersistentEvent"

Importing files:

E:\cool\source\com\easytouse\seminar\persist\PersistentEventPK.java

E:\cool\source\com\easytouse\seminar\persist\PersistentEventPeer.java

E:\cool\source\com\easytouse\seminar\persist\PersistentEventFactory.java

E:\cool\source\com\easytouse\seminar\persist\PersistentEvent.java

E:\cool\source\com\easytouse\seminar\persist\IPersistentEventFactory.java

E:\cool\source\com\easytouse\seminar\persist\IPersistentEvent.java

Persistent Support Classes generation completed successfully.

Starting Panel Creation.

Creating panel for eventRead(long)

Panel creation complete for eventRead(long)

Panel Creation Complete.

getCastingForAttribute: description

getCasting(String, description, null=operation mapping, false, 0)

getCasting(long, null-attribute, eventRead, false, 1)

EventRead stored in XML form.

SeminarFrame stored in XML form.

Creation of XML file complete

Creation of Java file(s) complete. Import is under way.

E:\cool\source\EventRead.java

E:\cool\source\IInternalErrorHandler.java

E:\cool\source\InternalErrorHandler.java

E:\cool\source\TreeSelectionAdapter.java

E:\cool\source\ConvertType.java

E:\cool\source\ActionAdapter.java

E:\cool\source\LoadEvent.java

E:\cool\source\Loadlong.java

E:\cool\source\ValidateTextField.java

E:\cool\source\SeminarFrame.java

10 Java files Imported

0 Miscellaneous files Imported

Committing changes in Model.

Creation of XML file complete

Creation of Java file(s) complete. Import is under way.

E:\cool\source\EventReadServlet.java

1 Java files Imported

4 Miscellaneous files Imported

Committing changes in Model.

Model changes due to Generation stored in the model.

Starting build...

File com.easytouse.seminar.persist.PersistentEvent.java not exported, identical file already in directory

File com.easytouse.seminar.persist.PersistentEventPeer.java not exported, identical file already in directory

File com.easytouse.seminar.persist.PersistentEventPK.java not exported, identical file already in directory

File com.easytouse.seminar.persist.PersistentEventFactory.java not exported, identical file already in directory

File com.easytouse.seminar.persist.IPersistentEventFactory.java not exported, identical file already in directory

File com.easytouse.seminar.persist.IPersistentEvent.java not exported, identical file already in directory

Exporting file com.easytouse.seminar.session.ejbproxy.Seminar.java to E:\cool\source\seminarProject\seminar_jar\com\easytouse\seminar\session\ejbproxy\Seminar.java

Exporting file com.easytouse.seminar.session.ejbproxy.ProxyRuntimeException.java to E:\cool\source\seminarProject\seminar_jar\com\easytouse\seminar\session\ejbproxy\ProxyRuntimeException.java

Exporting file com.easytouse.seminar.session.remote.ISeminarEJBHome.java to E:\cool\source\seminarProject\seminar_jar\com\easytouse\seminar\session\remote\ISeminarEJBHome.java

Exporting file com.easytouse.seminar.session.remote.ISeminarEJBObject.java to E:\cool\source\seminarProject\seminar_jar\com\easytouse\seminar\session\remote\ISeminarEJBObject.java

Exporting file com.easytouse.seminar.session.remote.IEvent.java to E:\cool\source\seminarProject\seminar_jar\com\easytouse\seminar\session\remote\IEvent.java

Exporting file com.easytouse.seminar.session.SeminarSessionBean.java to E:\cool\source\seminarProject\seminar_jar\com\easytouse\seminar\session\SeminarSessionBean.java

File com.easytouse.seminar.Seminar.java not exported, identical file already in directory

File com.easytouse.seminar.IEvent.java not exported, identical file already in directory

File com.easytouse.seminar.Event.java not exported, identical file already in directory

Exporting non-Java file E:\cool\output\seminarProject\seminar_jar\com\easytouse\seminar\StandaloneComponent.properties

Compiling E:/cool/source/seminarProject/seminar_jar/com/easytouse/seminar/session/ejbproxy/Seminar.java

Compiling E:/cool/source/seminarProject/seminar_jar/com/easytouse/seminar/session/SeminarSessionBean.java

Creating Jar File E:\cool\output\seminarProject\seminar.jar

Build Completed

Starting Generation of Enterprise JavaBeans.

E:\cool\exe\GenPlusCmd10 "E:\cool\models\seminar.jim" E:\cool\exe\ejbgen\EgenApp.asp STDOUT SimpleClass "com.easytouse.seminar.Seminar" -xc:\temp\params.xml

____________ Session Bean Generation Report ____________

 Session bean generation - OK.

_____________________ End Report _____________________

E:\cool\source\com\easytouse\seminar\session\SeminarSessionBean.java

E:\cool\source\com\easytouse\seminar\session\ejbproxy\Seminar.java

E:\cool\source\com\easytouse\seminar\session\remote\ISeminarEJBHome.java

E:\cool\source\com\easytouse\seminar\session\remote\ISeminarEJBObject.java

E:\cool\source\com\easytouse\seminar\session\remote\IEvent.java

E:\cool\source\com\easytouse\seminar\session\ejbproxy\ProxyRuntimeException.java

Bean Home: 		Seminar

Home Interface Name: 	ISeminarEJBHome

Remote Interface Name:	ISeminarEJBObject

EJB generation completed successfully.

Starting build...

Exporting file com.easytouse.seminar.persist.PersistentEvent.java to E:\cool\source\seminarProject\seminar_jar\com\easytouse\seminar\persist\PersistentEvent.java

Exporting file com.easytouse.seminar.persist.PersistentEventPeer.java to E:\cool\source\seminarProject\seminar_jar\com\easytouse\seminar\persist\PersistentEventPeer.java

Exporting file com.easytouse.seminar.persist.PersistentEventPK.java to E:\cool\source\seminarProject\seminar_jar\com\easytouse\seminar\persist\PersistentEventPK.java

Exporting file com.easytouse.seminar.persist.PersistentEventFactory.java to E:\cool\source\seminarProject\seminar_jar\com\easytouse\seminar\persist\PersistentEventFactory.java

Exporting file com.easytouse.seminar.persist.IPersistentEventFactory.java to E:\cool\source\seminarProject\seminar_jar\com\easytouse\seminar\persist\IPersistentEventFactory.java

Exporting file com.easytouse.seminar.persist.IPersistentEvent.java to E:\cool\source\seminarProject\seminar_jar\com\easytouse\seminar\persist\IPersistentEvent.java

Exporting file com.easytouse.seminar.Seminar.java to E:\cool\source\seminarProject\seminar_jar\com\easytouse\seminar\Seminar.java

Exporting file com.easytouse.seminar.IEvent.java to E:\cool\source\seminarProject\seminar_jar\com\easytouse\seminar\IEvent.java

Exporting file com.easytouse.seminar.Event.java to E:\cool\source\seminarProject\seminar_jar\com\easytouse\seminar\Event.java

Exporting non-Java file E:\cool\output\seminarProject\seminar_jar\com\easytouse\seminar\StandaloneComponent.properties

Compiling E:/cool/source/seminarProject/seminar_jar/com/easytouse/seminar/persist/PersistentEvent.java

Compiling E:/cool/source/seminarProject/seminar_jar/com/easytouse/seminar/Seminar.java

Creating Jar File E:\cool\output\seminarProject\seminar.jar

Build Completed

[image: image26.jpg]
Page 19 of 1
Version 1.0.0

_989951394.doc

_1005670269.vsd
Develop
Component�

Component
Development�

Specify
Component�

Develop
EJB�

Create
Model�

Test�

Create
Package�

Create
Package�

Deploy EJB to Shared�

Test EJB in Developer Environment�

Build Test Harness�

Create
Component Specification�

Specify attributes and methods�

Create
Interface Type�

Create
Specification
Type�

Implement Business Logic�

Build EJB�

Deploy EJB to Developer Environment�

Implement Persistence�

Deploy EJB to Shared�

_1005672225.vsd
COOL:Joe Evaluation Network�

APPSERVER
�

Data Server�

DEV 2�

DEV 4�

CLIENT 1�

DEV 5�

Servers�

Developer Workstations�

CLIENT 2�

_989951320.doc

